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A finite-element scheme is proposed to solve the stationary heat-conduction problem 
for piecewise inhomogeneous systems. 

The problem of determining temperature fields, their corresponding displacements and 
stresses in piecewise-inhomogeneous (laminar) bodies is an urgent task. As is noted in [i], 
a significant simplification in the solution of heat-conduction problems for thin-walled 
objects can be achieved by introducing the hypothesis of a linear change in temperature over 
the thickness. Numerical methods must be applied for complex boundary conditions and tem- 
perature effects. The finite elements method (FEM) was applied in [2] to the solution of a 
nonstationary heat-conduction problem for laminar systems, and a number of problems is 
solved on its basis fn [3, 4, 6]. 

Let us consider a piecewise-inhomogeneous thin-walled shell with an arbitrary quantity 
of orthotropic layers. The layer contact surfaces are determined by the coordinates a k 

and ak~ I (a k > ak_i) measured from the x1Ox2 coordinate surface to the lower and upper layer 
boundaries k (k = i, 2, ..., n). The location of the coordinate surface is chosen arbitrari- 

ly, there is ideal thermal contact between layers, and there are no inner heat sources. The 
temperature distribution over the thickness of the layer packet is taken in the form of a 
piecewise-linear dependence [5] which is legitimate for thin-walled systems 

T (u) (xl, x2, z) = To (xl, x J  [1 -- ~ (z)l 4- T~ (xl, x j  ~ (z), (i) 

Here $(z) can be taken in conformity with [5] or in the integral form 

2 a?~ 

~(e) = .f (~.r (s (2)  
a0 a o 

H e r e  k~3) i s  t h e  h e a t - c o n d u c t i o n  c o e f f i c i e n t  o f  t h e  k - t h  l a y e r  m a t e r i a l  i n  t h e  d i r e c t i o n  o f  
t h e  n o r m a l  x 3 = z ,  and  a o ,  a n a r e  t h e  z - c o o r d i n a t e s  o f  t h e  l o w e r  and  u p p e r  b o u n d a r i e s  o f  t h e  
l a y e r  p a c k e t .  

From t h e  v a r i a t i o n a l  p o i n t  o f  v i e w ,  t h e  s o l u t i o n  o f  t h e  h e a t - c o n d u c t i o n  d i f f e r e n t i a l  
e q u a t i o n  u n d e r  t h e  a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s  i s  e q u i v a l e n t  t o  s e e k i n g  t h e  minimum o f  
t h e  f u n c t i o n a l  [3] t h a t  t a k e s  t h e  f o l l o w i n g  f o r m  when t h e  h y p o t h e s i s  (1)  i s  t a k e n  i n t o  
a c c o u n t  : 

U = 0,5 J" {~I h) [To, 1 (1 - -  ~)  + T,,~q-] 2 q- )J2 h) lTo, 2 (1 - -  ~) + 
V 

(3) 
+ T~ ~_~]~ + ZL~) (T,, - -  T0)%~a} aV + [ [qT + 0,5~, (T - -  T~)q dS. 

t t e r e  k ! k )  and  t~  k)  a r e  t h e  h e a t - c o n d u c t i o n  c o e f f i c i e n t s  i n  t h e  x~ and  x2 a x i s  d i r e c t i o n s ,  q 
is the heat flux on part of the surface, u s is the heat-transfer factor, and T~ is the tem- 
perature of the environment. Here S is understood to be the shell or plate facial and side 
surfaces, and T is the corresponding desired or given temperature on these surfaces. Differ- 
entiation is denoted by a subscript after a comma. 
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TABLE i. Values of the Temperature Field on the Facial Sur- 
faces of a Three-layered Rectangular Plate 

X2/C2 

0,1 

0,2 

0,3 

0,4 

0,5 

xl/cl 

0,! 

18,69 
20,42 
43,06 
44,04 
20,07 
21,40 
43,75 
44,18 
20,25 
21,43 
43,79 
44,19 
20,27 
21,43 
43,79 
44,19 
20,28 
21,43 
43,79 
44,19 

0.2 

19,69 
20,83 
43,54 
44,10 
21,29 
21,91 
44,28 
44,26 
21,52 
21,94 
44,32 
44,26 
21,55 
21,94 
44,33 
44,26 
21,56 
21,94 
44,33 
44,26 

0.3 

19,79 
20,84 
43, 56 
44, 10 
21,40 
21,91 
44,31 
44,26 
21,65 
21,95 
44,35 
44,26 
21,69 
21,95 
44,35 
44,26 
21,67 
2I ,95 
44,35 
44,26 

0.4 

19,79 
20,84 
43,56 
44, 10 
21,43 
21,91 
44,31 
44,26 
21,67 
21,95 
44,35 
44,26 
21,70 
21,95 
44,35 
44,26 
21,71 
21,95 
44,35 
44,26 

0.5 

19,79 
20,84 
43,56 
44, lO 
21,44 
21,91 
44,31 
44,26 
21,67 
21,95 
44,35 
44,26 
21,71 
21,95 
44,35 
44,26 
21,71 
21,95 
44,35 
44,26 

To solve the problem under consideration we construct a rectangular finite element (FE) 
displayed in Fig. • We designate two degrees of freedom Toi, Tni in each i-th node (i = I, 
2, 3, 4) of the r-th FE. We approximate the desired temperatures in the FE domain by a 
known polylinear law 

4 4 

T O = ~ T o i ~ i ( x l ,  x2); Tn : ~ T ~ i ~ z ( x l ,  x2). (4) 
i = l  i = I  

Let us note that along the side of the element the functions To and T n vary linearly and are 
determined completely by values given at the nodes belonging to these sides. The conditions 
for continuity of the desired functions during passage from element to element are thereby 
conserved. Therefore, the FE has eight degrees of freedom that can be represented in the 
vector form 

v~--{T0~, T,a, To-,. . . . . .  T~} r �9 (5) 

The system of approximating functions over the FE domain has the following form 

r { ~  {~(1 @, ~1~, = } L ,  = - , 

~ ( 1  - -  r . . . . .  ~r  

The h e a t - c o n d u c t i o n  m a t r i x  o f  t h e  FE u n d e r  c o n s i d e r a t i o n  can  be  r e p r e s e n t e d  i n  t h e  fo rm 

(6) 

1/6(0) 8 R s Kr = L-qi ]i,i=! + [ ~]]*,;=1 , (7) 

where 

K(o) : i,~ L2 3 i,s L3, dV; (8) 
V 

R~j = ~ =~r 
s (9) 

The s econd  t e r m  i n  (7) d e f i n e d  a c c o r d i n g  to  (9) p e r m i t s  t a k i n g  a c c o u n t  o f  h e a t  t r a n s f e r  on 
the facial and side FE surfaces. 

The heat-conduction matrix coefficients are not presented in the present report because 
of their awkwardness. To illustrate their structure we show one of these coefficients 
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Fig. i. 

to, a trot 

R e c t a n g u l a r  FE o f  a p i e c e w i s e - i n h o m o -  
g e n e o u s  s y s t e m ,  

R]~ + R n  = ~ab (B~-- 2D~ + P~)--}- - -~  ~ abP~ + (%ab + 3bHa3 + 3aH~2 ) , (10)  

w h e r e  a ,  b a r e  t h e  FE d i m e n s i o n s ,  a n d  Uo i s  h e a t - t r a n s f e r  f a c t o r  on  t h e  l o w e r  s u r f a c e  o f  t h e  
e l e m e n t  z = a o .  I n t e g r a l  c h a r a c t e r i s t i c s  o f  t h e  p i e c e w i s e - i n h o m o g e n e o u s  s y s t e m  e n t e r  i n t o  
(io) 

a l l  fill  a l l  a ~  

go ao ao ao 
/t~ (ii) 

= ~: lpaz; i = 1 , 2 ;  p = 2 , 3 .  
/t o 

Here ~ ! } )  and ~ ! } )  are  unders tood  to  be the  h e a t - t r a n s f e r  f a c t o r s  over  the a p p r o p r i a t e  s i d e  
surfaces of the element for the layer k. 

The temperature effects distributed over the FE surface must be referred to the nodes to 
realize the finite-elements method for the computation of piecewise-inhomogeneous systems. 
The vector of the nodal temperature loads takes the form 

F,. = { F , } L ,  , 

w h e r e  t h e  v e c t o r  c o m p o n e n t s  a r e  d e t e r m i n e d  i n  c o n f o r m i t y  w i t h  t h e  d e p e n d e n c e s  

(12)  

F~ =- ,f qbi (~174 - -  q) dS. (13)  
s 

It can be considered with sufficient accuracy for the determination of the temperature 
load Vector that the heat-transfer factor, the temperature of the environment, and the heat 
flux within the limits of the element are constant. Let us show the structure of the tem- 
perature load vector component corresponding to the first degree of freedom 

Fi = (%abT~) + 2bA~sT~ 3) + zaA~#~ ~ - ~(~) ) _ --$-i (qoa b +  2b@1~ v-' 2aOl~)j . 

~ r e  T = ( ~  r~ ~=) i s  the  environment  t emperature  a t  the l ower  ~nd ~ ide  (1-3 
faces of the element, respectively, qo is the heat flux on the FE lower surface. 
gral characteristics in (14) have the form 

(14) 

and 1-2) sur- 
The inte- 

a n a l l  

wv~p z; p =  (15) 
/to ao 

Here o(k)  and q!k) ~13 correspond to a given heat flux on the side faces of the element. 

Expressions (i0) and (14) take account of the thermal flux and convective heat transfer 
on the facial and side surfaces of the element. However, as is known, they cannot be observed 
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5 

4,x~ 6xo ~ fS'xfS" ~?fx52 
FE mesh 

Fig. 2. Graphs of the convergence of the solution 
for points of the lower (i, 3) and upper (2, 4) 

surfaces of a five-layered orthotropic plate. A, %. 

on the identical FE surface. This circumstance is automatically taken into account since one 
of the components in the relationships (i0) and (14) equals zero. 

Four different kinds of boundary conditions are associated with the heat-conduction 
differential equation. The firstkind corresponds to a temperature given on a certain part 
of the boundary (boundary conditions of the first kind) 

T = T (S). (16) 

Wi th in  the  f ramework o f  t he  law (1) t a k e n ,  t h i s  c o r r e s p o n d s  to  g i v e n  t e m p e r a t u r e s  on the  
e l emen t  s u r f a c e s .  The h e a t  f l u x  i n t e n s i t y  i s  g i v e n  on t he  e l emen t  b o u n d a r y  f o r  b o u n d a r y  c o n -  
d i t i o n s  o f  the  second  k i n d .  Th i s  k ind  o f  bounda ry  c o n d i t i o n s  s h a p e s t h e  t e m p e r a t u r e  l o a d  
v e c t o r .  The p r e s e n c e o f  c o n v e c t i v e  h e a t  t r a n s f e r  t h a t  t a k e s  a c c o u n t  o f  the  a d d i t i o n a l  com- 
p o n e n t s  o f  (9) i n  t he  h e a t - c o n d u c t i o n  m a t r i x  and a p a r t  o f  t h e  t e m p e r a t u r e  l o a d  v e c t o r  (14) 
c o r r e s p o n d s  to  b o u n d a r y  c o n d i t i o n s  o f  t he  t h i r d  k i n d .  I d e a l  t h e r m a l  c o n t a c t  c o n d i t i o n s  
(boundary  c o n d i t i o n s  o f  t h e  f o u r t h  k ind)  a r e  s a t i s f i e d  be tween  t he  domain i n d i v i d u a l  e l e -  
men ts .  T h e r e f o r e ,  f rom the  FEM v i e w p o i n t ,  t h e  d e g r e e s  o f  f r eedom To i ,  Tni can be e i t h e r  
g i v e n ( b o u n d a r y  c o n d i t i o n s  o f  the  f i r s t  k i n d )  o r  d e s i r e d  (boundary  c o n d i t i o n s  o f  t he  s e c o n d ,  
t h i r d ,  and f o u r t h  k i n d s ) .  

Le t  us n o t e  t h a t  v a r i a t i o n  o f  the  f u n c t i o n a l  (3) w~th r e s p e c t  to  i n d e p e n d e n t  d e s i r e d  
f u n c t i o n s  To and T n as  w e l l  as  i n t e g r a t i o n  by p a r t s  p e r m i t  a sy s t em o f  h e a t - c o n d u c t i o n  d i f -  
f e r e n t i a l  e q u a t i o n s  and t he  a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s  to  be o b t a i n e d .  The o r d e r  o f  t he  
system is independent of the quantity of layers and equals 4. Since it is difficult to de- 

scribe this question within limited report, let us state that the equations obtained permit 
analytic solution of a certain class of problems for laminar orthotropic systems. 

Example i. Numerical Investigation of the Convergence of the Constructed FE. A square 
plate is considered on whose side surfaces a zero temperatureis maintained. Convective heat 

transfer from the environment occurs on the plate lower surface. The heat transfer factor 
is so = i0 W/(m2.deg), the environment temperature is T~ ~ = 15 ~ . A heat flux of intensity 

qn = 200 W/m 2 is supplied to the upper surface, The plate has a five-layered structure, 
each layer is a unidirectional epoxy carbon plastic with the following thermophysical chara- 

cteristics: %~ = 14.6 W/(m'deg), %= = k3 = 0.93 W/(m.deg). The layers are oriented alter- 
nately at angles 0 and 90 ~ relative to the xl axis, the outer layers are oriented at the 
0 ~ angle to the xl axis. The,origin is placed in the left corner of the plate. The layer 

thicknesses are h k = O.17h, 0.25h, 0.16h, 0.25h, 0.17h (k = 1-5), where h = 0.i m is the 
total plate thickness. The plate planform dimensions are ci = c~ = c = 2 m. The structure 

under consideration is a thin-walled system (c/h = 20). 

An analytic solution is obtained for this problem by expanding the load in a double 
trigonometricseries. We have To = 29.906 ~ and T n = 48.457 ~ at a point with the coordinates 
xl = x2 = 0.5c (the point A), and To = 11.843 ~ and T n = 19.885 = at the point With coordinates 
xl = x2 = 0.1c (point B). A graphical interpretation of the convergence of the numerical 

solution to the analytic is given in Fig. 2. Curves i and 2 describe the convergence of the 
solution at the point A. Curve i corresponds to the temperature on the lower surface and 
curve 2 on the upper. Curves 3 and 4 describe the convergence of the solution at the point 
B, respectively. The error A, % was determined with respect to the analytic solution as a 
function of the density of the FE mesh. It is seen from an analysis of the graphs that the 
element constructed assures convergence of order p2, i.e., the error of the solution is 

diminished four times when the FE mesh is compressed twice. 
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Example 2. Determination of the Stationary Temperature Field in a Three-Layered, 
Rectangular Plate. The temperature field is determined in a three-layered rectangular 
(ci = 3.5 m, c2 = 2.9 m) plate to give a foundation to the reliability of the proposed 
approach. Convective heat transfer from the environment occurs on the lower and upper sur- 
faces of the plate, and a zero temperature is maintained on the side surfaces. The heat 
transfer factors are do = 8.7oW/(m'deg) , a n = 23 W/(m2-deg), the temperature Of. the e~viron- 
ment is T(~ = 20 ~ T(n) = 45 . The heat-conduction coefficients are X~ k) = %~k) = X~ ~ = 
% = (0.52, 0.12, 0.52)/W(m-deg)and the layer thicknesses are h k = (0.17, 0.I, 0.08) m 
(k = l, 2, 3). The arigin is placed at the left corner of the plate. 

The structure under consideration is the wall panel of a residential building designed 
for Central Asia. On the basis of the three-dimensional approach eluciated in [7], this 
problem is solved in [8]. 

The results of a computation for a quadrant of the plate are presented in Table i. 
Values of the temperature at the lower and upper plate surfaces are presented in the first 
and third rows [8]. Values of the temperature obtained on the basis of the proposed approach 
are presented in the second and fourth rows for a 40 • 40 FE mesh. As a comparison shows, 
the values of the temperature found on the basis of the FEM are in good agreement with the 
results of the more rigorous approach [7, 8]. 

In conclusion, let us note that the proposed approach can be considered as an extension 
of the discrete~continual FEM scheme [9] in heat-conduction problems for pieeewise-inhomo- 
geneous systems. The crux of this scheme is that discretization is realized only on the 
system surface; on the thickness each part of it, the finite element, is an inhomogeneous 
continuum. 

In contrast to known finite-element schemes for the solution of heat-conduction pro- 
blems for laminar systems based on global discretization (over the surface and over the 
thickness), the proposed approach results in a significant reduction in the number of un- 
knowns and permits examination of thin-walled laminar systems with an arbitrary quantity 
of layers. 

NOTATION 

To(xl. x2). Tn(xl, x2), temperature fields on the lower and upper surfaces of apiece- 
wise-inhomogeneous system; ~(z), temperature field distribution function over the thickness 
of the layer packet; Kr, heat-conduction matrix of the r-th finite element; Fr, nodal tem- 
perature load vector; and q, heat flux. 

LITERATURE CITED 

i. Ya. S. Podstrigach and Yu. M. Kolyano, Nonstationary Temperature Stresses in Thin Plates 
[in Russian], Kiev (1972). 

2. E. M. Glazunov and G. N. Pikina, Inzh.-Fiz. Zh., 49, No. 2, 324-329 (1985). 
3. L. Segeriind, Application of the Finite Elements Method [Russian translation], Moscow 

(1979). 
4. A. N. Khomchenko, Inzh.-Fiz. Zh., 4-9, No. 2, 321-323 (1985). 
5. V. S. Sipetov and V. S. Karpilovskii, Inzh.-Fiz. Zh., 50, No. 5, 870-871 (1986). 
6. A. N. Podgornyi, P. P. Gontarovskii, G. A. Marchenko, and O. M. Pecherskaya, Finite 

Elements Method in Stationary Thermoelasticity Problems [in Russian], Preprint No. 126, 
IPMash, Ukraine Academy of Sciences (1980). 

7. V. K. Chibiryakov Soprotiv. Mater. Teoriya ~ooruzh. No. 15 60-64 Kiev (1971). 
8. G. G. Burtsev and V. K. Chibiryakov, Soprotiv. Mater. Teor. Sooruzh., No. 51, 63-67, Kiev 

(1987). 
9. V. G. Piskunov, V. S. Sipetov, and V. S. Karpilovskii, Finite Element Method of Analyzing 

Inhomogeneous Shallow Shells and Plates [in Russian], Kiev (1987), pp. 52-102. 

1443 


